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SUMMARY

The testis expresses the largest number of
genes of any mammalian organ, a finding that has
long puzzled molecular biologists. Our single-cell
transcriptomic data of human and mouse spermato-
genesis provide evidence that this widespread tran-
scription maintains DNA sequence integrity in the
male germline by correcting DNA damage through a
mechanism we term transcriptional scanning. We
find that genes expressed during spermatogenesis
display lowermutation rates on the transcribed strand
and have low diversity in the population. Moreover,
this effect is fine-tunedby the level of gene expression
during spermatogenesis. The unexpressed genes,
which in our model do not benefit from transcriptional
scanning, diverge faster over evolutionary timescales
and are enriched for sensory and immune-defense
functions. Collectively, we propose that transcrip-
tional scanning shapes germline mutation signatures
and modulates mutation rates in a gene-specific
manner, maintaining DNA sequence integrity for the
bulk of genes but allowing for faster evolution in a spe-
cific subset.

INTRODUCTION

It has been known for many years that the testis is the organ with

the most complex transcriptome in terms of the number of ex-

pressed genes (Melé et al., 2015; Schmidt and Schibler, 1995;

Soumillon et al., 2013). Widespread transcription in the testis

has been reported to include over 80% of all protein-coding

genes in human as well as in other species (Melé et al., 2015;

Soumillon et al., 2013). Several hypotheses have been put forth

to explain this observation (Kleene, 2001; Schmidt, 1996). Wide-

spread expression may represent a functional requirement for
248 Cell 180, 248–262, January 23, 2020 ª 2019 Elsevier Inc.
the gene products in question (Johnston et al., 2008; Schmidt,

1996). However, other organs containing more cell types—

such as the brain—do not exhibit such high numbers of

expressed genes (Brawand et al., 2011; Melé et al., 2015; Sou-

millon et al., 2013). Moreover, recent studies have shown that

knocking out many testis-enriched and evolutionarily conserved

genes does not causemale infertility in mice (Miyata et al., 2016).

The notable discordance between the transcriptome and the

proteome in the testis (Kleene, 2003; Wang et al., 2019) further

supports the notion that the widespread transcription does not

exclusively lead to protein production, as the central dogma of

molecular biology would suggest.

A second hypothesis implicates leaky transcription during the

massive chromatin remodeling that occurs throughout sper-

matogenesis as the cause of the observed widespread tran-

scription (Necsulea and Kaessmann, 2014; Rathke et al., 2014;

Schmidt, 1996). However, this model would predict more

expression during later stages of spermatogenesis—when the

genome is undergoing the most chromatin changes—in contra-

diction with previous observations (Naro et al., 2017; Rathke

et al., 2014; Soumillon et al., 2013). Additionally, given the high

energetic requirements of transcription, one would not expect

such high levels of non-functional transcription (Frumkin et al.,

2017; Huang et al., 2015; Lynch and Marinov, 2015).

Here, we propose the ‘‘transcriptional scanning’’ hypothesis,

whereby widespread testis transcription facilitates germline

DNA repair and ultimately modulates gene evolution rates. Using

single-cell RNA sequencing (scRNA-seq) data of human and

mouse testes, we confirmed that widespread transcription

originates from the germ cells. We found that spermatogen-

esis-expressed genes have lower germline mutation rates in

the population compared to the unexpressed genes and that

the signature of transcription-coupled repair (TCR) on these

genes could explain the observed pattern of biased germline

mutation rates. Our transcriptional scanning model suggests

that widespread transcription during spermatogenesis facilitates

a DNA-scanning process that systematically detects and repairs

bulky DNA damage through TCR (Hanawalt and Spivak, 2008;
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Figure 1. scRNA-Seq Reveals a Detailed Molecular Map of Human Spermatogenesis

(A) Schematic of developmental stages of human spermatogenesis.

(B) Dimension reduction analysis (PCA and t-distributed stochastic neighbor embedding [tSNE]) of human testes scRNA-seq results. Colors indicate the main

spermatogenic stages and somatic cell types (see Figure S1 and STAR Methods).

(C) PCA on the spermatogenic complement of the single-cell data. Arrows and large arrowheads indicate the RNA velocity algorithm (La Manno et al., 2018)

predicted developmental trajectory and transcriptionally inactive stages during spermatogenesis, respectively.

(D and E) Heatmap (D) and plots (E) of the expression patterns of all human-protein-coding genes throughout spermatogenesis according to k-means method-

defined gene clusters (see STARMethods). The shaded error bars in (E) represent the standard deviation of z-scored gene expression levels as calculated in (D).

See also Figures S1 and S2 and Tables S1, S2, and S3.
Werner et al., 2015), thus reducing germlinemutations rates and,

ultimately, the rates of gene evolution. The set of unexpressed

genes in the male germline is not random. Rather, they are

enriched in sensory and immune/defense system functions,

which have evolved faster in recent human evolution (Boehm,

2012; Flajnik and Kasahara, 2010; Singh et al., 2012). However,

transcription-coupled damage (TCD) appears to overwhelm the

effects of TCR in the small subset of very highly expressed

genes, which are enriched in spermatogenesis-related func-

tions, implicating a role for TCD in modulating germline mutation

rates (Jinks-Robertson and Bhagwat, 2014). Collectively, our

transcriptional scanning model exposes a hitherto under-appre-

ciated aspect of DNA repair in biasing gene mutation rates and

evolution rates throughout the genome.

RESULTS

scRNA-Seq Reveals the Developmental Trajectory of
Spermatogenesis
To identify gene expression pattern throughout spermatogen-

esis, we applied scRNA-seq to the human and mouse testes

(Figure S1A). The resulting data allowed us to distinguish

between the genes expressed in the somatic and germline cells,

as well as to reveal genes with dynamic expression patterns

throughout the developmental process of spermatogenesis,

including mitotic amplification, meiotic specification to generate

haploid germ cells, and, finally, differentiation andmorphological

transition to mature sperm cells (Figures 1A and 1B; Hammoud

et al., 2014; Sharma and Agarwal, 2011).
Principal component analysis (PCA) and unsupervised clus-

tering on the scRNA-seq data of human testicular cells revealed

19 clusters composed of cells from different biological and

technical replicates (Figures 1B, S1B, and S1C; Table S1;

STAR Methods). We annotated the 5 cell clusters composed

of somatic cells—including Leydig cells, Sertoli cells, peritubu-

lar myoid cells, testicular endothelial cells, and testis-resident

macrophages (Sharma and Agarwal, 2011)—using previously

determined cell type markers (Figures 1B, S1D, and S1E; see

STAR Methods). Excluding the somatic cells, PCA on the 14

clusters of germ cells revealed a continuum suggesting that

the order of the cells corresponds to the developmental trajec-

tory of spermatogenesis (Figure 1C). Four independent lines of

evidence support this inference. First, the order of expression

of known marker genes across the continuous clusters

matched their developmental order (Figure S1E). Second,

pseudotime analysis using Monocle2 revealed the same cell

trajectory (Figures S1E and S1F; Qiu et al., 2017). Third, RNA

velocity analysis (La Manno et al., 2018)—examining the rela-

tionship between the spliced and unspliced transcriptomes—

further supported the developmental progression during sper-

matogenesis and also identified the previously reported decline

of expression during meiosis and late spermiogenesis (Fig-

ure 1C; Rathke et al., 2014; Sharma and Agarwal, 2011). Finally,

our scRNA-seq data across the developmental program of

spermatogenesis showed high consistency with other recently

published human testis scRNA-seq results (Figure S1G; Guo

et al., 2018; Hermann et al., 2018; Sohni et al., 2019; Wang

et al., 2018).
Cell 180, 248–262, January 23, 2020 249



Our scRNA-seq data allowed us to test whether the long-

observed widespread gene expression in the testis has contribu-

tions from both germ and somatic cells or mainly stems from the

germ cells. Examining only germ cells, we found that 90.5%of all

protein-coding genes are expressed (Figure 1D; STAR

Methods). In contrast, all of the detected somatic cell types

collectively express 59.9% of the genes, of which >99% overlap

with the germ-cell-expressed genes. Overall, the spermatocytes

and round spermatids clusters have the largest number of ex-

pressed genes at the single-cell level, farmore than that of testic-

ular somatic cell types (Figure S1H). We further compared the

number of expressed protein-coding genes across multiple

developmental scRNA-seq datasets, including that of the human

developing brain and another human testis study (Guo et al.,

2018; Hochane et al., 2019; La Manno et al., 2016; Nowakowski

et al., 2017; Pellin et al., 2019; see STAR Methods). Again, we

found that testicular germ cells express the greatest number of

protein-coding genes (Table S2). This observation is also sup-

ported by bulk RNA-seq results across all complex organs/tis-

sues included in the Genotype-Tissue Expression (GTEx) data-

set (Figure S1I; GTEx Consortium, 2015). Together, our

scRNA-seq results and other analyses support the notion that

the widespread gene expression in the testis originates in the

germ cells.

To further ask whether specific developmental stages account

for the high expression observed, we clustered all human pro-

tein-coding genes into six groups, including the unexpressed

genes (Figures 1D and 1E; Table S3). Although no single stage

alone accounts for the widespread transcription, we can infer

that each sperm cell will have expressed �90.5% of protein-

coding genes by the end of its maturation.

To test the generality of these results, we repeated the exper-

iments on mouse testes and found that the pattern of transcrip-

tion during mouse spermatogenesis was broadly comparable to

that of human (Figures S2A–S2D; Tables S1 and S4). In terms of

genes expressed across the stages, we found an overall highly

conserved spermatogenesis gene expression program (Figures

S2C–S2E). A combined principal component analysis of human

and mouse germ cells further highlighted this conservation (Fig-

ures S2F and S2G).We also noted that PC2 clearly separates the

human and mouse cells (Figure S2H), indicating a species-spe-

cific gene expression signature between the two species. These

genes include metabolic genes, such as GAPDH (Gapdh) (Paoli

et al., 2017) and FABP9 (Fabp9) (Selvaraj et al., 2010); chemo-

kine gene CXCL16 (Cxcl16); and sperm-motility-related gene

SORD (Sord) (Frenette et al., 2006; Figure S2I). Collectively,

these results highlight the conserved gene expression of human

andmouse spermatogenesis but also identify the divergence be-

tween the two species.

Reduction of Germline Mutation Rates in
Spermatogenesis-Expressed Genes
We hypothesized that widespread transcription during

spermatogenesis could lead to two scenarios (Figure 2A): (1)

transcription events unwind the double-stranded DNA, leading

to an increased likelihood of mutations by TCD (Jinks-Robertson

and Bhagwat, 2014) and consequently to higher germline muta-

tion rates and diversity within the population and/or (2) the tran-
250 Cell 180, 248–262, January 23, 2020
scribed regions are subject to TCR of DNA damage (Hanawalt

and Spivak, 2008), thus reducing germline mutation rates and

safeguarding the germline genome, leading to lower population

diversity. In both scenarios, differences in expression states

may contribute to the pattern of germline mutation rates and

ultimately lead to differential gene evolution rates.

Public databases have amassed �300 million germline vari-

ants detected in the human population, providing a rich resource

for studying germline mutation rates (Zerbino et al., 2018).

Because �80% of these germline variants are thought to have

originated in males (Campbell and Eichler, 2013; Makova and

Li, 2002), we used the single-nucleotide variations (SNVs) from

this dataset to query for germline mutation rates and predicted

mutational signatures caused by widespread transcription in

the testis (see STAR Methods; Acuna-Hidalgo et al., 2016; Nei

et al., 2010). Interestingly, we found that spermatogenesis-ex-

pressed genes, regardless of the timing of their expression

(throughout and following meiosis), generally have a lower rate

of germline SNVs, relative to the unexpressed genes (Figure 2B).

This difference is robust across donors (Figures S3A–S3C) and

gene-clustering parameters (Figure S3D). We also confirmed

the observation of lower germline SNV rates using only SNVs

detected by the 1000 Genomes project (Figure S3E).

Previous results have shown that the density of somatic muta-

tions is negatively correlated with genomic features of open

chromatin, likely due to greater DNA repair accessibility (Polak

et al., 2015; Schuster-Böckler and Lehner, 2012). To test

whether lower germline SNV rates in the spermatogenesis-ex-

pressed gene sets are confounded by transcription-independent

DNA repair favoring open chromatin states of the expressed

genes, we asked whether the upstream regions of these genes

have lower germline SNV rates compared to those of the unex-

pressed genes. Upstream regions (5 kb) of genes are strongly

enriched with open chromatin states in expressed genes, rela-

tive to unexpressed genes (Buenrostro et al., 2013). However,

analyzing the germline SNV rates in the upstream regions re-

vealed minimal differences between the spermatogenesis-ex-

pressed and unexpressed genes (Figure S3F). A similar pattern

was also observed for the gene downstream regions (Fig-

ure S3G). Together, these results indicate that it is transcription

itself—not the associated chromatin state—that leads to

lowered germline SNV rates in the spermatogenesis-expressed

genes.

To further control for differences in gene-family-specific muta-

tion rates, we examined gene families individually according to

whether they are expressed (in any stage) or unexpressed during

spermatogenesis (see STAR Methods; Gray et al., 2016). For all

large gene families (>100 genes) with at least 10 genes in each

category, we found lower germline SNV rates in the spermato-

genesis-expressed gene group (Figure 2C). For example, of

the 110 genes with a basic helix-loop-helix domain, 94 are

expressed in the germ cells, and the expressed subgroup has

an �23% lower germline SNV rate in the population as

compared to the unexpressed complement (Mann-Whitney

test p < 1.1e�3).

We next tested whether this reduction of germline mutation

rates in the expressed genes is unique to male germline gene

expression profile, relative to that of other cell types. By
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Figure 2. Widespread Transcription in Spermatogenic Cells Is Associated with Reduced Germline Mutation Rates

(A) Two possible consequences of widespread transcription in spermatogenic cells: transcription-coupled DNA damage and transcription-coupled repair.

(B) Germline SNV rates in the gene body across the gene clusters, as determined in Figure 1D.

(C) Germline SNV rates in the gene body of expressed and unexpressed genes across large gene families (see STAR Methods).

(D) Germline SNV rates in the gene body across gene sets as determined by binarized expression (expressed versus unexpressed) in testicular germ cells and

somatic cells.

(E) Ratios of germline SNV rates of unexpressed genes versus the expressed genes determined from diverse human organs and cell types. Points represent

individual tissue samples collected by the GTEx project (GTEx Consortium, 2015).

Significance in (B)–(D) is computed by theMann-Whitney test with Bonferroni correction formultiple tests. Error bars indicate 99%confidence intervals calculated

by bootstrap method with n = 10,000 (see STAR Methods; same for figures below).

See also Figure S3 and Table S3.
distinguishing the binarized expression status in both germ cells

and testicular somatic cell types, we found that genes expressed

exclusively in somatic cells do not exhibit lower germline SNV

rates than those of unexpressed genes in the somatic cell types

(Figures 2D and S3H; see STAR Methods). This observation was

also confirmed by analyzing gene expression across other

human developmental systems, including the developing brain

(Figure S3I). To study somatic tissues more broadly, we turned

again to the GTEx dataset, which has characterized transcrip-

tional profiles across all major human tissues/organs, including

testis (GTEx Consortium, 2015). Although not at the single-cell

level and thus an average measure of gene expression across

cell types, testis expression in this dataset still showed a signif-

icant difference relative to all other tissues in its germline variant

ratio of expressed and unexpressed genes (Z score = 4.13; Fig-
ure 2E). Interestingly, we found that the ovary transcriptome

does not predict such an effect. These results support the sec-

ond model (Figure 2A), in which widespread transcription-

coupled repair in the male germ cells lead to lower levels of

germline mutation rates in spermatogenesis-expressed genes.

A TCR-Induced Germline Mutational Signature
Although we studied the germline mutation rates using SNVs

from population-wide whole-genome sequencing (WGS), the

observed differential mutation rates may also be influenced by

natural selection, particularly in the coding regions. To search

for a transcription-dependent germline mutational signature

and exclude selection, we restricted our analysis to stringently

defined intron regions (see STAR Methods). We first repeated

our analysis on the differential mutation rates across gene
Cell 180, 248–262, January 23, 2020 251



clusters using intronic SNVs. We confirmed that intron SNV rates

are lower in the spermatogenesis-expressed genes than that in

the unexpressed genes (Figures S3J and S3K). However, the

effect is smaller, suggesting that, in the coding regions, selection

also contributes to a lower SNV rate in the spermatogenesis-ex-

pressed genes. We used these intronic SNVs in the following

analyses to determine the nature of the transcription-dependent

germline mutational signatures.

If the reduction of mutations results from a male germ cell

TCR-induced process, we would expect an asymmetry between

the germline mutation rates of the coding and the template

strands in the spermatogenesis-expressed genes (Haradhvala

et al., 2016; Mugal et al., 2009), but not in the genes unexpressed

during spermatogenesis (Figure 3A). The asymmetry would be

such that the template strand retains fewer mutations, because,

in TCR, DNA damage is detected by the RNA polymerase on the

template strand (Hanawalt and Spivak, 2008). To distinguish be-

tween mutations occurring on the coding and template strands,

we adapted a previously introduced approach for identifying

strand-asymmetries in the somatic mutation rate (Figure 3B;

Chen et al., 2017; Haradhvala et al., 2016). Applying this

approach to intronic germline SNVs, we inferred a lower muta-

tion rate on the template strands—relative to the coding

strands—of genes expressed during spermatogenesis, regard-

less of their expression pattern along the spermatogenesis

stages (Figure 3C). This effect was not apparent in the unex-

pressed genes (Figure S4B), as exemplified by A-to-T (A > T)

transversion mutations in Figure 3C. Notably, we found that

the coding strand, which has no transcription or only minimal

levels of antisense transcription (Pelechano and Steinmetz,

2013), shows similar level of SNV rates between expressed

genes and unexpressed genes (except for A-to-G mutations,

which are known to accumulate mutations through transcrip-

tion-coupled DNA damage in the coding strand; Haradhvala

et al., 2016).

We computed an ‘‘asymmetry score’’ to study the difference in

mutation rates inferred from the coding and template strands

(Figures 3C and 3D; Haradhvala et al., 2016). As expected, the

expressed gene clusters showed strong asymmetry scores be-

tween the coding and template strands (Figures 3D and 3G).

As a control, we tested the overall Watson and Crick strands

(Figures S4D and S4E) and did not find such an asymmetry,

indicating a transcription-dependent asymmetry. The difference

in asymmetry scores between mutation types may reflect differ-

ential TCR efficiencies across DNA damages. For example, the A

> Gmutation type has the strongest asymmetry between coding

and template strands, as also observed in cancer mutational

signatures (Haradhvala et al., 2016). The asymmetry scores

decrease throughout spermatogenesis, correlating with a

decreasing expression of transcription-coupled repair genes

during spermatogenesis (Figures S4F and S4G).

We further tested whether male germ cell gene expression is

unique in causing asymmetric germline mutation rates between

coding and template strands. The unexpressed genes during

spermatogenesis have minimal asymmetry score levels, in sharp

contrast with the expressed gene clusters (Figures 3D and 3G).

As a negative control, we shuffled the gene clustering assign-

ments while maintaining the group sizes and found that differ-
252 Cell 180, 248–262, January 23, 2020
ence of asymmetry scores disappeared (Figures S5A–S5C). To

test whether this signal is unique to the male germ cells, we

compared the asymmetry scores of unexpressed gene sets

determined from themale germ cells and from somatic cell types

(Figure S5D). We found that only the unexpressed genes from

the male germ cells could predict a minimum level of coding-

template asymmetry score. These results support the notion

that the gene expression pattern during spermatogenesis

uniquely generates the asymmetric germline mutation rates

between coding and template strands.

Bidirectional Transcription Signatures of Mutation
Asymmetries
Initiation of gene expression can occur on the opposite strand of

gene upstream region and in the inverse direction, leading to

bidirectional transcription (Core et al., 2008; Duttke et al.,

2015; Figure 3E). If lower mutation rates on the template strand

are indeed maintained by transcription, we predicted that muta-

tion asymmetry scoreswould display an inverse pattern between

the opposite sides of the initiation of bidirectional transcription

(Figure 3E). Consistently, we detected an inverse pattern of

asymmetry scores between the gene body (intron) and the

upstream sequences (Figures 3F, 3G, S4A, and S4B). Similarly,

because transcription may extend beyond the annotated end

or polyadenylation site (Figure 3E; Proudfoot, 2016), we also pre-

dicted that the asymmetry scores in the downstream sequences

would display a similar, though expectedly weaker pattern

compared to that of the gene body (Figure 3E). Again, we found

the expected pattern in which the gene body and the down-

stream sequences have the same pattern of asymmetry scores

(Figures 3G, 3H, S4B, and S4C). We further controlled the

bidirectional transcription-induced mutational signature by

removing the genes for which the upstream region overlaps

with another gene, for example, those forming head-to-head

pairs (Trinklein et al., 2004; Table S5; see STAR Methods). The

mutation asymmetry scores on the remaining genes still show

consistent bidirectional transcription signatures (Figure S5E),

supporting the notion that bidirectional transcription of genes

causes the observed asymmetric pattern.

Finally, we also detected evidence that the same TCR influ-

ences are manifested in the mouse data (Figures S5F and

S5G). For example, G-to-T (G > T) transversion mutations

show strong conserved asymmetric mutation patterns in both

the human and mouse data. Because G-to-T mutations come

predominantly from endogenous oxidative DNA damage of gua-

nine (Menoni et al., 2018; Tubbs and Nussenzweig, 2017), such

conserved asymmetric germline mutation patterns between

coding and template strands of genes are consistent with

TCR-induced effects on germline mutations.

Sequence Contexts of TCR-Induced Germline
Mutational Signatures
Point mutations are strongly biased by the local sequence

context (Helleday et al., 2014; Ségurel et al., 2014). For example,

the rate of C-to-T mutations at CpG dinucleoride sites is

�10-fold higher than the samemutation type in CpH (A/C/T) sites

(Ségurel et al., 2014). Previous studies in The Cancer Genome

Atlas (TCGA) cancer mutation profiles considering the 50- and
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Figure 3. TCR-Associated Mutation Asymmetry Scores Show Bidirectional Transcription and Extended Transcription Signatures

(A) Schematic of a transcribed gene with the template strand containing lower DNA damage and, consequently, a lower mutation rate.

(B) Distinguishing germline mutations according to coding and template strands (see STAR Methods).

(C) A-to-T transversion mutation rates of the coding and the template strands for the spermatogenic gene categories (paired-sample t test). Dashed line indicates

the average SNV rate in the unexpressed genes.

(D) Asymmetry scores throughout spermatogenic gene categories (see STAR Methods).

(E) Schematic of gene architecture indicating bidirectional and extended transcription.

(F–H) Asymmetry scores in the upstream 5-kb region (F), gene body (G), represented by intron regions, and downstream 5-kb region (H) across all six mutation

types (Mann-Whitney test). Significance p values were adjusted for multiple tests with Bonferroni method. *p < 0.01; **p < 1.0e�6; n.s., not significant.

See also Figures S4 and S5.
30-adjacent bases have revealed �30 tumor-specific mutational

signatures across tumor types (Alexandrov et al., 2013). Simi-

larly, we sought to understand the sequence context specificity
of transcription-induced germline mutational signatures (Fig-

ures 4 and S6; see STAR Methods). Consistent with earlier

results (Nachman and Crowell, 2000), we found that C-to-T
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mutation rates at the CpG sites are at least 10-fold higher relative

to CpH sites or any other mutation types (Figure 4A). Cytosine

deamination damage is usually efficiently repaired through the

base-excision repair (BER) pathway (Krokan and Bjørås, 2013).

Failing to repair the deaminated cytosine in the genome causes

C-to-T transition mutation upon DNA replication (Duncan and

Miller, 1980), and indeed, studying the C-to-T mutation rates ac-

cording to coding and template strands, we found only a slight

mutation asymmetry between the strands at the YpCpH

contexts (Y stands for C or T; Figures 4A, 4B, 4E, and 4F).

C-to-T mutation at the CpG sites showed a minimal level of

strand asymmetry, indicating that BER function at these sites

is not generally influenced by transcription.

Systematically studying all of the mutation types, according to

both their sequence contexts and coding/template strands, led

us to uncover a pattern of TCR-induced germline mutational

signature, which we term the ‘‘30-pyrimidine rule.’’ First, consis-

tent with our observations in Figure 3, we found that A-to-G mu-

tations have the strongest asymmetric mutation rates between

coding and template strands (Figures 4A and 4B). Other muta-

tion types, including A-to-T, G-to-T, and C-to-G mutations,

also showed substantial overall levels of mutation asymmetries

between the two strands (Figures 4A and 4B). Studying the mu-

tation subtypes according to their adjacent bases, we found that

mutation subtypes with a 30-pyrimidine (Y) consistently have

stronger asymmetry scores than the ones with a 30-purine (S;

Figure 4B). For example, in A-to-T mutation type, we found

that the asymmetry scores predominantly come from the sub-

types where the reference A is in the NpApY sites. We further

tested this 30-pyrimidine rule by controlling the 50 base, exam-

ining NXA-NXT and NXG-NXC pairs, where N is the controlled

50 base and X is the reference base of a given mutation type

(see STAR Methods). We found that the mutation types with

strong strand asymmetries (i.e., A-to-T, A-to-G, G-to-T, and

C-to-G mutation types) exhibited a dramatic and significantly

stronger mutation asymmetry scores when the 30-adjacent
base is a pyrimidine (Figure 4C). Similarly, we tested whether

the germline mutational signature revealed 50-adjacent base-

associated rules. In this case, we controlled the 30-adjacent
base, generating AXN-TXN and GXN-CXN pairs. We found

only a slight 50-pyrimidine preference in the C-to-T and C-to-G

mutation types (Figure 4D), indicating that the 50-adjacent base
has less of an impact on the germline mutational signatures

than that of the 30-adjacent base. Lastly, we repeated our anal-

ysis of the 30-pyrimidine rule using mouse germline mutations

and found that it is largely recapitulated (Figures 4E–4H), sup-

porting the notion that TCR-induced mutational signatures are

conserved across species.
Figure 4. TCR-Induced Mutational Signatures Considering Sequence C

(A) Human intronic germline mutation rates in the spermatogenesis-expressed ge

coding/template strands.

(B) Human germline mutation asymmetry scores according to adjacent bases in

(C and D) Human asymmetry score pairs distinguished by 30- (C) or 50- (D) adjacen
were plotted in a purine (left)-to-pyrimidine (right) fashion in terms of 30- (C) or 50

(E and F) Mouse intronic germline mutation rates (E) and asymmetry scores (F) in

(G and H) Mouse asymmetry score pairs distinguished by 30- (G) or 50- (H) adjac
Significance in (C) and (D) and (G) and (H) were computed by paired-sample t te

See also Figure S6.
Transcriptional Scanning Is Tuned by Gene-
Expression Level
Our results led us to propose transcriptional scanning as a

mechanism to systematically reduce DNA-damage-induced

mutagenesis in the bulk of genes by widespread spermatogenic

transcription to safeguard the germline genome sequence integ-

rity (Figure 5A). We predicted that transcriptional scanning would

be tuned by different expression levels in the testis. Indeed,

examining our total and strand-specific germline SNV rates in

the intron regions according to different expression levels (Fig-

ure 5B; Table S6; see STAR Methods), we observed that, as

expression level increases, the overall mutation rate drops (Fig-

ure 5C), and furthermore, that this drop can be mostly attributed

to the template strand, supporting a transcription-dependent

manner of DNA repair (Figures 5D and 5E). Surprisingly, howev-

er, the very highly expressed genes showed the opposite effect:

the overall mutation rates and template strand mutation rates all

increase, and the mutation rates on the coding strand also sub-

stantially increase (Figure 5D). We propose that this pattern indi-

cates that the very highly expressed genes incur transcription-

coupled DNA damage (Figure 2A), especially on the coding

strand (Figure 5D). This observation is consistent with previous

reports from other systems of transcription-associated muta-

genesis in highly expressed genes (Jinks-Robertson and Bhag-

wat, 2014; Park et al., 2012). The A-to-G transition mutation

type has the most evident TCD-induced mutation rate increase

(Figure 5D), and similarly, a strong TCD-induced effect was

readily observed in somatic A-to-G mutations in liver cancer

samples (Haradhvala et al., 2016). Together, the TCD-induced

effect in the very highly expressed spermatogenesis genes is

consistent across all mutation types, supporting a general TCD

effect (Figures 5D and 5E).

Overall, this analysis suggests that spermatogenesis gene

expression level tunes germline mutation rates by transcriptional

scanning. Increasing gene expression levels during spermato-

genesis are correlated with mutation rate reduction on the

template strand (Figure 5D) but only to a point, while on the cod-

ing strand, increasing gene expression levels lead to increased

mutation rates (Figure 5D). In the very highly expressed genes,

TCD overwhelms the TCR-induced reductions and produces

an overall higher germline mutation rate than genes expressed

at moderate levels (Figure 5C).

De Novo Germline Mutational Signatures
Although our analysis into the germline mutational signatures

thus far was based on population-wide SNVs, we sought to

further test our model using de novo germline mutations

(DNMs), because these constitute a set of variants that have
ontexts

nes. The mutation rates considered the adjacent bases and distinguished the

the spermatogenesis-expressed genes.

t bases. For each pair of points in a given mutation type, the asymmetry scores

- (D) adjacent base.

the spermatogenesis-expressed gene.

ent bases, same as shown in (C and D).

st with Bonferroni correction for multiple tests.
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expression levels, with background shadow indicating 99% confidence intervals.

Significance p values were adjusted for multiple tests with Bonferroni method. *p < 0.01; **p < 1.0e�6; n.s., not significant.

See also Table S6.
only recently entered the human population and consequently

are less influenced by natural selection (Acuna-Hidalgo et al.,

2016). We collected two publicly available DNM datasets from

large-scale healthy trio-WGS studies (An et al., 2018; Jónsson

et al., 2017), generating a total of 214,728 single-nucleotide

DNMs for testing our transcriptional scanning model. Analyzing
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DNM rates across our gene clusters defined from spermatogen-

esis expression pattern (Figures 1D and 1E) or expression level

(Figure 5B), we again found that spermatogenesis-expressed

genes exhibit a lower level of mutation rates, tuned by their

expression level (Figures 6A and 6B). Additionally, we consid-

ered the local sequence contexts of these DNMs and calculated
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Figure 6. De Novo Germline Mutations Exhibit Spermatogenesis Expression-Dependent Mutational Signatures

(A) DNM rates across the spermatogenesis gene clusters, as determined in Figure 1D.

(B) DNM rates across spermatogenesis gene expression level categories, as determined in Figure 5B.

(C and D) DNM rates (C) and asymmetry scores (D) regarding to local sequence contexts and coding/template strands in the spermatogenesis-expressed genes.

(E and F) Correlations between the SNV rates and scaled DNM rates on the coding strand (E) and on the template strand (F), respectively.

(G) Correlation between the asymmetry scores defined from SNVs and from DNMs.

Each dot in (E)–(G) represents a mutation subtype that considers 50- and 30-adjacent bases referring to the reference base. We excluded the dots representing

C-to-T mutating rates in the CpG contexts in (E) and (F), though including such outlier dots would further increase the correlation coefficients. Significance in (A)

and (B) was computed by the Mann-Whitney test with Bonferroni method correction for multiple tests.
their mutation rates on both coding strand and template strand

(Figure 6C). We found that the mutation rates calculated from

population-wide SNVs and that from the DNMs are highly corre-

lated in both coding and template strands (Figures 6E and 6F),

supporting our earlier analysis into the germline mutational sig-

natures using SNVs. Finally, we compared the asymmetry

scores computed from population-wide SNVs and that from

DNMs, and again, we observed consistent results (Figure 6G).

Collectively, the de novo mutation datasets clearly recapitulate

our observation of transcription-dependent mutational signa-

tures and the effect of transcriptional scanning derived from

analyzing the population-wide SNVs.

Transcriptional Scanning over Evolutionary Timescales
To study the evolutionary aspects of transcriptional scanning, we

first studied the functional attributes of the unexpressed genes

during spermatogenesis, which are the relative minority of genes
that in our model would not benefit from transcriptional scan-

ning. In this set of 1,890 genes, we observed significant enrich-

ment for fast-evolving genes between human and apes (dN/dS

values larger than 1.0; hypergeometric p value: 1.0e�15; see

STAR Methods). These genes are enriched for functions related

to environmental sensing, immune system, defense responses,

and signal transduction (Figures 7A and S7A; Table S7). These

functions are known to have evolved faster in the human genome

(Boehm, 2012; Flajnik and Kasahara, 2010; Singh et al., 2012),

and their lack of expression in the testes provides a possible

contribution to their unique mode of evolution. Consistently,

we detected the highest rates of sequence divergence across

ape genomes among our category of unexpressed genes (hy-

pergeometric p value of enrichment in the top 10% highly diver-

gent genes: 8.8e�10; see STAR Methods; Figure 7B). Although

selection is typically invoked to account for the rapid evolution

of genes (Figures S7B and S7C), biased germline mutation rates
Cell 180, 248–262, January 23, 2020 257
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(D) Schematic of transcriptional scanning in biasing germline mutation rates and its evolutionary impact.

(E) A revised model for generating biased DNA sequence variation and gene evolution.

See also Figure S7 and Table S7.
may also contribute, according to the neutral theory of gene evo-

lution (Boehm, 2012; Flajnik and Kasahara, 2010; Nei et al.,

2010). To test this, we studied the synonymous substitution rates

(dS, generally assumed to be neutral) as a proxy for the germline

mutation rates and used this measure to compare between the

spermatogenesis-expressed and unexpressed genes. Interest-

ingly, we found that the spermatogenesis-expressed genes

have lower dS values (Figure 7C), consistent with our analysis

of SNV rates in the intron regions (Figures S3J and S3K). We

further found that the very highly expressed genes in spermato-

genesis have increased rates of divergence (Figures S7F–S7I).

As expected from their high expression, we found that this set

of genes is mainly enriched for roles in male reproduction (Fig-

ure S7J; Table S7). Together, our analyses into human-ape

gene divergence provide evidence that widespread gene

expression during spermatogenesismay have shaped gene evo-

lution rates.

DISCUSSION

Our findings led us to propose the transcriptional scanning

model (Figure 7D), whereby widespread transcription during

spermatogenesis systematically reduces germline mutations in

the expressed genes by TCR, thereby safeguarding the germ

cell genome sequence integrity. Given that this process is car-

ried out in the germline, the variable mutation rates have impor-

tant implications. Combined with natural selection, this process

may contribute to the relatively slower evolution of the bulk of
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spermatogenesis-expressed genes (Figure 7D, middle). The

small group of unexpressed genes during spermatogenesis is

enriched for sensory and immune/defense system genes (Fig-

ure 7A), and our transcriptional scanning model provides insight

into how variation is preferentially retained in this class of genes.

The biased germline mutation rates provide increased popula-

tion-wide genetic diversity, which may be under strong selective

biases for adaptation at the population level in rapidly changing

environments. Genes with very high germline expression form a

third class, and these exhibit higher germline mutation rates,

which our model explains in terms of TCD obscuring the effect

of TCR (Figures 5F and 7D, right). The model thus provides a

comprehensive view of the combined effects of TCR and TCD

in spermatogenic cells (Figure 5F) and refines previous observa-

tions that germline mutation rates increase with expression

levels although highly expressed genes evolve more slowly

(Chen et al., 2017; Drummond et al., 2005; Good and Nachman,

2005; Pál et al., 2001; Park et al., 2012). Although the observed

mutational bias does not alone direct evolution according to

our model—because genetic diversity in the population is also

influenced by genetic drift and natural selection—we propose

that it contributes to global gene evolution rates.

Gene evolution at the sequence level involves (1) the genera-

tion of novel DNA variants, stemming from DNA-damage-

induced mutagenesis, replication errors, and/or recombination,

and (2) natural selection and/or drift on the novel variants (Nei,

2005; Nei et al., 2010). Our results suggest that a DNA-repair

mechanism contributes to the biased production of germline



variants throughout the genome, and we propose that this repre-

sents a hitherto under-appreciated aspect in the establishment

of differential gene evolution rates. Thus, DNA repair pathways

act to constrain mutagenic DNA damage in a biased manner,

analogous to the effects of selection and drift in the population

(Figure 7E). By understanding these patterns of uneven germline

mutations and the intrinsic removal mechanism of germline DNA

damage, our model provides insight into mutation-driven

genome evolution (Nei, 2013), such that transcriptional scanning

in spermatogenesis imposes an additional bias in modulating

rates of gene evolution.

Beyond modulating germline mutation rates and evolution

rates, widespread gene expression during spermatogenesis

generates a unique pattern of transcription-dependent germline

mutational signatures (Figures 3, 4, and 5). Our analysis into

context-specific germline mutation rates allowed us to identify

a new mutational signature induced by TCR, which we term 30-
pyrimidine rule, suggesting that TCR functions more efficiently

at the XpY sites, where X and Y stand for the damaged base

and pyrimidine, respectively. The results are also consistent

with a model whereby TCR-recognizable DNA damages occur

more frequently at the XpY sites but with no frequency bias be-

tween the coding and template strand. RNA polymerase would

then recruit TCRmachinery to the template strand for DNA dam-

age repair, generating coding-template asymmetric mutation

rates. Future work is required to understand which mechanism

(or both) leads to the 30-pyrimidine rule of the transcription-

dependent germline mutational signatures.

Although transcriptional scanning is proposed to systemati-

cally detect and remove bulky germline DNA damages, male

germ cells are still expected to retain damage that cannot be

repaired by the TCR machinery, resulting in germline mutations

(Barnes and Lindahl, 2004; Vermeulen and Fousteri, 2013).

Thesemale germlinemutations likely originate fromDNA replica-

tion errors, accumulating with paternal age (Kong et al., 2012), or

less bulky DNA damages like base deamination (Krokan and Bjø-

rås, 2013). Recombination-induced double-strand breaks in the

germ cell genome are also frequent, affecting mutation rates

near crossover hotspots (Arbeithuber et al., 2015). Thus, beyond

TCR, it will be of interest to analyze the germlinemutation pattern

with respect to other DNA repair pathways, such as mismatch

repair following germ-cell-specific genome replication (Yehuda

et al., 2018), and distinct chromatin states, which may affect

transcription-independent DNA repair (Gonzalez-Perez et al.,

2019; Krokan and Bjørås, 2013; Supek and Lehner, 2017).

Our model leads to important testable predictions and may

provide deeper insights into human genetics and diseases. First,

the same process should also hold in other species that have

similar widespread transcription in male germ cells (Soumillon

et al., 2013), and we also provide evidence for conserved

transcriptional scanning in mouse (Figures 4, S2, S4, and S6).

Interestingly, a recent study on Drosophila testis gene expres-

sion using scRNA-seq also revealed widespread transcription

and that the mutation rate of germ cells decreases with the pro-

gression of spermatogenesis (Witt et al., 2019). This observation

is consistent with our model that transcription-coupled DNA

repair during spermatogenesis removes existing germline DNA

damages. Second, we expect that TCR-deficient animals should
produce offspring with an increase in the number of de novomu-

tations in the germline-expressed genes and that they would not

show the characteristic lower mutation rates in the template—

versus the coding—strand. For patients with TCR gene-associ-

ated mutations, such as Cockayne syndrome and xeroderma

pigmentosum (Cleaver, 2017), our model predicts overall higher

germline mutation rates. Lastly, embryonic stem cells (ESCs)

share similar patterns of widespread transcription (Efroni et al.,

2008), leading us to speculate that systematic scanning and

removal of DNA damage also functions in ESCs. If so, beyond

spermatogenesis, transcriptional scanning may be deployed to

achieve lower mutation rates in ESCs and in the early developing

embryos (Cervantes et al., 2002; Efroni et al., 2008).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Human testicular tissue NYU Langone Health Fertility Center https://nyulangone.org/locations/fertility-center

C57BL/6J Mouse testis The Jackson Laboratory, through

NYU Langone Health Rodent

Genetic Engineering Laboratory

JAX: 000664, https://med.nyu.edu/research/

scientific-cores-shared-resources/

rodent-genetic-engineering-laboratory

Chemicals, Peptides, and Recombinant Proteins

DPBS, no calcium, no magnesium Thermo Fisher Scientific Cat#14190250

Fetal Bovine Serum Thermo Fisher Scientific Cat#16000044

DMEM, high glucose Thermo Fisher Scientific Cat#11965092

Trypsin-EDTA Thermo Fisher Scientific Cat#25200056

Collagenase, type IV Thermo Fisher Scientific Cat#17104019

SuperScript III Reverse Transcriptase Invitrogen Cat#18080085

TURBO DNase Invitrogen Cat#AM2238

PrimeScriptTM Reverse Transcriptase Takara Clonetech Cat#2680A

Trypan Blue Thermo Fisher Scientific Cat#15250061

Critical Commercial Assays

inDrop Single Cell RNA Seq Kit 1CellBio Cat#10196

Qubit dsDNA HS Assay Kit Invitrogen Cat#Q32851

Bioanalyzer High Sensitivity DNA Analysis Kit Agilent Cat#5067-4626

NEBNext mRNA Second Strand Synthesis KIT New England Biolabs Cat#E6111S

HiScribe T7 High Yield RNA Synthesis kit New England Biolabs Cat#E2040S

NextSeq 500/550 75 cycles High Output v2 kit Illumina Cat#FC-404-2005

PhiX Control Library v3 Illumina Cat#FC-110-3001

Agencourt RNAClean XP magnetic beads Beckman Coulter Cat#A63987

Agencourt AMPure XP magnetic beads Beckman Coulter Cat#A63881

Deposited Data

Raw and analyzed data This paper GEO: GSE125372

Human reference genome GRCh38:

Homo_sapiens.GRCh38.dna.

primary_assembly.fa.gz

Ensemble release90 ftp://ftp.ensembl.org/pub/release-90/fasta/

homo_sapiens/dna/Homo_sapiens.

GRCh38.dna.primary_assembly.fa.gz

Human genome annotation GRCh38.90:

Homo_sapiens.GRCh38.90.gtf.gz

Ensemble release90 ftp://ftp.ensembl.org/pub/release-90/

gtf/homo_sapiens/Homo_sapiens.

GRCh38.90.gtf.gz

Mouse reference genome GRCm38:

Mus_musculus.GRCm38.dna_

sm.toplevel.fa.gz

Ensemble release90 ftp://ftp.ensembl.org/pub/release-90/fasta/

mus_musculus/dna/Mus_musculus.GRCm38.

dna_sm.toplevel.fa.gz

Mouse genome annotation GRCm38.90:

Mus_musculus.GRCm38.90.gtf.gz

Ensemble release90 ftp://ftp.ensembl.org/pub/release-90/gtf/

mus_musculus/Mus_musculus.

GRCm38.90.gtf.gz

Human adult testicular cells scRNA-seq data Guo et al., 2018 GEO: GSE112013

Human adult bone marrow hematopoietic

cells scRNA-seq data

Pelline et al., 2019 GEO: GSE117498

Human embryonic midbrain scRNA-seq data Le Manno et al., 2016 GEO: GSE76381

Human developing cortex scRNA-seq data Nowakowski et al., 2017 https://cells.ucsc.edu/?ds=cortex-dev#

Human week 16 embryonic kidney

scRNA-seq data

Hochane et al., 2019 GEO: GSM3143601

(Continued on next page)
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Genotype-Tissue Expression

(GTEx, release V7) gene expression profiles

GTEx Portal https://gtexportal.org/home/datasets/

Human germline variations Ensembl release91 ftp://ftp.ensembl.org/pub/release-91/variation/

vcf/homo_sapiens/homo_sapiens.vcf.gz

Mouse germline variations Ensembl release91 ftp://ftp.ensembl.org/pub/release-91/variation/

vcf/mus_musculus/mus_musculus.vcf.gz

1000 Genome phase 3 germline variants Ensembl release 91 ftp://ftp.ensembl.org/pub/release-91/variation/

vcf/homo_sapiens/1000GENOMES-phase_3.

vcf.gz

Jonsson et al, 2017 de novo mutation Jonsson et al., 2017 https://www.nature.com/articles/

nature24018#supplementary-information

An et al, 2018 de novo mutation

(control group)

An et al., 2018 https://science.sciencemag.org/highwire/

filestream/720071/field_highwire_adjunct_files/

2/aat6576_Table-S2.xlsx

Human-mouse orthologous gene pairs Mouse Genome

Informatics (MGI)

http://www.informatics.jax.org/homology.shtml

Human gene family annotations HUGO Gene

Nomenclature

Committee

https://www.genenames.org/data/genegroup/#!/

Oligonucleotides

inDrop scRNA-seq: PE2-N6 primer:

TCGGCATTCCTGCTGAACCGCTCTTCCG

ATCTNNNNNN

1CellBio: inDrop Single

Cell RNA Seq Kit

Cat#10196

inDrop scRNA-seq: PE1 primer index 1:

CAAGCAGAAGACGGCATACGAGATC

GTGATCTCTTTCCCTACACGA

1CellBio: inDrop Single

Cell RNA Seq Kit

Cat#10196

inDrop scRNA-seq: PE1 primer index 5:

CAAGCAGAAGACGGCATACGAGATCA

CTGTCTCTTTCCCTACACGA

1CellBio: inDrop Single

Cell RNA Seq Kit

Cat#10196

inDrop scRNA-seq: PE1 primer index 6:

CAAGCAGAAGACGGCATACGAGATATT

GGCCTCTTTCCCTACACGA

1CellBio: inDrop Single

Cell RNA Seq Kit

Cat#10196

inDrop scRNA-seq: PE1 primer index 12:

CAAGCAGAAGACGGCATACGAGATTAC

AAGCTCTTTCCCTACACGA

1CellBio: inDrop Single

Cell RNA Seq Kit

Cat#10196

inDrop scRNA-seq: PE2:

AATGATACGGCGACCACCGAGATCTAC

ACGGTCTCGGCATTCCTGCTGAAC

1CellBio: inDrop Single

Cell RNA Seq Kit

Cat#10196

inDrop scRNA-seq: Custom Read 1 primer:

GGCATTCCTGCTGAACCGCTCTTCCGATCT

1CellBio: inDrop Single

Cell RNA Seq Kit

Cat#10196

inDrop scRNA-seq: Custom Index Read primer:

AGATCGGAAGAGCGTCGTGTAGGGAAAGAG

1CellBio: inDrop Single

Cell RNA Seq Kit

Cat#10196

inDrop scRNA-seq: Custom Read 2 primer:

CTCTTTCCCTACACGACGCTCTTCCGATCT

1CellBio: inDrop Single

Cell RNA Seq Kit

Cat#10196

Software and Algorithms

Custom inDrop scRNA-seq raw data

mapping pipeline

This paper https://github.com/flo-compbio/singlecell

Custom codes for biological analysis This paper https://github.com/xiabo821/TS_related_scripts

MATLAB R2017a MathWorks https://www.mathworks.com/

R version 3.5.2 CRAN R Project https://cran.r-project.org/bin/windows/

base/old/3.5.2/

Perl version 5.28.0 Perl https://www.perl.org/get.html

STAR version 2.5.3a Dobin et al., 2013 https://github.com/alexdobin/STAR

(Continued on next page)
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Monocle2 version 2.6.1 Qiu et al., 2017 http://samtools.sourceforge.net/

velocyto.R version 0.6 La Manno et al., 2018 https://github.com/velocyto-team/velocyto.R

dropEst version 0.7.1 Petukhov et al., 2018 https://github.com/hms-dbmi/dropEst

gtools version 3.8.1 CRAN R package https://cran.r-project.org/web/packages/

gtools/index.html

BEDOPS version 2.4.35 BEDOPS https://bedops.readthedocs.io/en/latest/

content/revision-history.html#v2-4-35
LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for resources should be directed to, and will be

fulfilled, by the Lead Contact, Itai Yanai (Itai.Yanai@nyulangone.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human testicular tissue
Human testicular tissue was obtained from New York University Langone Health (NYULH) Fertility Center; this was approved by the

NYULH Institutional Review Board (IRB). Fresh seminiferous tubules were collected from testicular sperm extraction (TESE) surgery

of two healthy donors (one was 40-year old and the other was 45-year old) with an obstructive etiology for infertility. The tissues were

collected and processed in different time (with a time interval of one year). There was no drug or hormonal treatments prior to the

TESE surgery in both cases. The donors were fully informed before signing consent to donating excess tissue for research use.

This was again done in fashion consistent with the IRB (including tissue sample de-identification).

Mouse testicular tissue
C57BL/6J mice (4-month old) were bought from the Jackson Laboratory through the New York University Langone Health (NYULH)

Rodent Genetic Engineering Laboratory. Mice were anesthetized before sacrificing for testicular tissue collection following the

NYULH IRB requirements for experimental animal operation.

METHOD DETAILS

Human testicular single cell suspension preparation
Human testicular tissues were kept in cell culture grade PBS buffer and transported to the research lab on ice within 1h post TESE

surgery for single-cell preparation. Testicular single-cell suspension was prepared by adapting existing protocols (Valli et al., 2014).

Specifically, samples from TESE surgery was washed once with PBS and resuspended in 5mL PBS. Seminiferous tubules were

minced quickly in a cell culture dish and spun down at 100 g for 0.5min to remove supernatants. The minced tissue was resuspended

in 8mL of 37�C pre-warmed tissue dissociation enzyme mix (See below). Tissue dissociation was done by incubating at 37�C for

20min with mechanical dissociation using serological pipette every 5min. After digestion, the reaction was quenched by adding

2mL of 100% FBS (GIBCO, Cat. 16000044) to a final concentration of 20%. Dissociation mix was filtered through a 100um strainer

to remove remaining seminiferous tubule chunks. Cells were washed once with DMEMmedium (GIBCO, Cat. 11965092) with 10%of

FBS and twice with PBS to remove residual EDTA in the cell suspension. Cell viability was checked with Trypan-blue staining (with

over 85% viable cells) before moving to the inDrop microfluidics platform. The tissue dissociation enzyme mix (8mL) was composed

of 7.56mL of 0.25% Trypsin-EDTA (GIBCO, Cat. 25200056), 400mL of 20mg/mL type IV Collagenase (GIBCO, Cat. 17104019) and

40mL of 2U/mL TURBO DNase (Invitrogen, Cat. AM2238).

Mouse testicular single cell preparation
C57BL/6J mice (4-month old) were bought from the Jackson Laboratory through the New York University Langone Health (NYULH)

Rodent Genetic Engineering Laboratory. Mice were anesthetized before sacrificing for testicular tissue collection following the

NYULH IRB requirements for experimental animal operation. Together, two mice were collected and processed separately as

biological replicates, with a time interval of two months. The dissociated testicular tissue was kept in the PBS buffer and then trans-

ported to the research lab on ice immediately for single-cell dissociation. The tissue dissociation protocol is slightly different from the

human testicular tissue dissociation. The whole testis was decapsulated in PBS buffer to collect the seminiferous tubules. The sem-

iniferous tubules were quickly minced into small pieces of �2-5mm and then washed once with PBS buffer. The minced tissue was

resuspended in 8mL of 37�C pre-warmed tissue dissociation buffer 1 (1mg/mL type IV Collagenase in DMEMmedium) and incubate
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at 37�C for 5min. This pre-dissociation step removes majority of the interstitial cells. The tissue was then spun down at 100 g for 1min

to remove supernatants. The tissue was resuspended by 8mL tissue dissociation buffer 2 (7.96mL of 0.25% Trypsin-EDTA and 40mL

of 2U/mL TURBO DNase). The second tissue dissociation was done by incubating at 37�C for 15min with mechanical dissociation

using serological pipette every 5min. The dissociation was quenched by adding 2mL of 100% FBS to a final concentration of

20%. Dissociation mix was filtered through a 100um strainer to remove any remaining tissue chunks. Cells were washed once

with DMEM medium and twice with PBS to remove residual EDTA. Cell viability was checked with Trypan-blue staining (both repli-

cates had over 95% viable cells) before moving to the inDrop microfluidics platform.

Single-cell RNA-Seq
Single-cell barcoding was carried out with the inDrop Single Cell RNA Seq Kit (1CellBio, Cat. 10196) on the inDrop microfluidics sys-

tem (1CellBio, Cat. 10256-01) as instructed by the manufacturer and by its original developers (Klein et al., 2015). Briefly, the micro-

fluidic chip and barcoded hydrogel beads were primed ahead of single cell preparation. The ready-to-use single-cell suspension in

PBS (after two timeswashwith PBS buffer) was adjusted to 0.1million/mL by countingwith hemocytometer. Next, the prepared cells,

reverse transcription reagents (SuperScript III Reverse Transcriptase, Invitrogen, Cat. 18080085), barcoded hydrogel beads and

droplet-making oil were loaded onto the microfluidic chip sequentially. Encapsulation was done by adjusting microfluidic flow rates

as instructed. Single-cell barcoding and reverse transcription in the droplets were done by incubating at 50�C for 2h followed by heat

inactivation at 70�C for 15min. Then the droplets containing barcoded single-cells were aliquoted aiming for 1000-2000 cells per

aliquot and then decapsulated by adding 5-10mL demulsifying agent included in the inDrop Single Cell RNA Seq Kit.

Sequencing library preparation
Single-cell RNA-Seq library preparation after inDrop single-cell capturing was carried out as instructed by the manufacturer

(1CellBio) and similar to the CEL-Seq2 method (Hashimshony et al., 2016). Basically, barcoded single-cell cDNA was purified with

Agencourt RNAClean XP magnetic beads (Beckman Coulter, Cat. A63987) followed by second-strand synthesis reaction with NEB-

Next mRNA Second Strand Synthesis Kit (New England Biolabs, Cat. E6111S). Then linear amplification of cDNA was carried out

through in vitro transcription (IVT) using HiScribe T7 High Yield RNA Synthesis Kit (New England Biolabs, Cat. E2040S). IVT-amplified

RNA was fragmented and purified again with Agencourt RNAClean XP magnetic beads. The second reverse transcription was done

with PrimeScriptTM Reverse Transcriptase (Takara Clonetech, Cat. 2680A) followed with cDNA purification with Agencourt AMPure

XPmagnetic beads (BeckmanCoulter, Cat. A63881). Quantity of cDNAwas determined by qPCR on a fraction (5%) of purified cDNA.

Final PCR amplification was done according to qPCR results and purified with Agencourt AMPure XP magnetic beads. Library con-

centration was determined by Qubit dsDNAHS Assay Kit (Invitrogen, Cat. Q32851). Library size was determined by Bioanalyzer High

Sensitivity DNA Analysis Kit (Agilent, Cat. 5067-4626).

Sequencing
Single-cell RNA-Seq library sequencing was carried out with Illumina NextSeq 500/550 75 cycles High Output v2 kit (Cat. FC-404-

2005). Custom sequencing primers were used for NextSeq sequencing as instructed and provided by the manufacturer (1CellBio,

Cat. 10196) (Klein et al., 2015). In addition, 5% of PhiX Control v3 (Illumina, Cat. FC-110-3001) library was added to give more

complexity to scRNA-Seq libraries. Pair-end sequencing was carried out with read1 (barcodes) for 34bp, index read for 6bp and

read2 (transcripts) for 50bp. We processed and sequenced two technical replicates for each human testicular sample and one

technical replicate for each mouse testicular sample, together generating 6 scRNA-seq datasets for downstream analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sequencing data processing
Raw sequencing data obtained from the inDrop method were processed using a custom-built pipeline, available at https://github.

com/flo-compbio/singlecell. Briefly, the ‘‘W1’’ adaptor sequence of the inDrop RT primer was located in the barcode read

(the second read of each fragment), by comparing the 22-mer sequences starting at positions 9-12 of the read with the known

W1 sequence (‘‘GAGTGATTGCTTGTGACGCCTT’’), allowing at most two mismatches. Reads for which the W1 sequence could

not be located in this way were discarded. The start position of the W1 sequence was then used to infer the length of the first

part of the inDrop cell barcode in each read, which can range from 8-11 bp, as well as the start position of the second part of the

inDrop cell barcode, which always consists of 8 bp. Cell barcode sequences were mapped to the known list of 384 barcode se-

quences for each read, allowing at most one mismatch. The resulting barcode combination was used to identify the cell from which

the fragment originated. Finally, the UMI sequence was extracted, and reads with low-confidence base calls for the six bases

comprising the UMI sequence (minimal PHRED score less than 20) were discarded. The reads containing the mRNA sequence

(the read 2 of each fragment) were mapped to the references genomes (here human GRCh38 and mouse GRCm38) by STAR

2.5.3a with parameter ‘—outSAMmultNmax 1’ and default settings otherwise (Dobin et al., 2013). Mapped readswere split according

to their cell barcode and assigned to genes by testing for overlap with exons of protein-coding genes and long non-coding RNA

genes, based on genome annotations from Ensembl release 90. For each gene, the number of unique UMIs across all reads assigned

to that gene was determined (UMI filtering), corresponding to the number of transcripts expressed and captured.
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Quality filtering of the scRNA-seq data
Single cells with less than 1,000 expressed genes or contain more than 20% of transcripts from either mitochondrial genes (i.e.,

genes that are part of themitochondrial genome) or ribosomal protein genes were removed from downstream analysis. After filtering,

the single cells from different biological or technical replicate were merged together for downstream analysis. In total, we have 2554

cell from human, with an average of 6499 UMI counts and 2495 expressed protein-coding genes in the raw data. Frommouse testes,

we obtained 1593 cells after quality filtering, with an average of 8998UMI counts and 2601 expressed protein-coding genes in the raw

data. The more detailed cell information from each sample is provided in the Table S1.

Testicular cell clustering and cell type identification
Following cell quality filtering, clustering was done by k-means on the principal component analysis scores, with k determined by

‘elbow-method’ (Kodinariya and Makwana, 2013). To increase the performance of cell clustering step, the raw UMI counts of testic-

ular single cells were pre-processed through the kNN-smoothing method, with k = 3 which indicates a smoothing step involving the

nearest 3 single cell transcriptomes. The smoothing step greatly reduces the noise in scRNA-seq data while retaining the variance

between single cells (Wagner et al., 2017). Following kNN-smoothing, the principal component analysis used for cell clustering was

performed on the smoothed UMI expression matrix of all testicular cells. The pre-processed expression matrices were first normal-

ized to 100,000 transcripts per cell, followed by calculating the Fano factor (or variance-to-mean ratio, VMR) for each gene (Baron

et al., 2016). Genes with a Fano factor larger than 1.5 folds of themean values were defined as dynamically expressed genes. In total,

3615 dynamically expressed genes were selected from the human datasets for downstream PCA visualization and cell clustering.

PCA was then performed on the normalized and log2 transformed expression matrix using the dynamically expressed genes. Cell

clusteringwas done by k-means clusteringwith elbow-methods determined k. Following first rounds of cell clustering (k = 24), several

marker genes were used to determine spermatogenic cell types/states versus somatic cells. DDX4 (also called VASA) was used as a

pan-germ cell marker to distinguish the spermatogenic cell lineage from the somatic cells. FGFR3 and DMRT1 (Kanatsu-Shinohara

and Shinohara, 2013; von Kopylow and Spiess, 2017) were used to determine spermatogonia. SYCP3 and TEX101 (Chang et al.,

2011; Djureinovic et al., 2014) were used to determine spermatocytes. ACRV1 and ACTL7B (Chang et al., 2011; Djureinovic et al.,

2014) were used to determine round spermatids. TNP1, PRM1, PRM2, YBX1, YBX2 and HILS1 (Djureinovic et al., 2014; Mali

et al., 1989; Rathke et al., 2014; Yan et al., 2003) were used collectively to determine elongating spermatid states. Together, we iden-

tified 14 human spermatogenic cell clusters with at least 50 cells in each cluster (min value as 69 cells, corresponding to spermato-

cyte-1). Seven cell clusters which overlapped with each other were identified as somatic cells (as shown in Figure 1B). These cells

were isolated for an additional k-means clustering algorithm (k = 5) and visualized through the t-distributed stochastic neighbor

embedding (tSNE) algorithm, as shown in Figures 1B and S1D. In summary, CYP11A1, CSF1, and IGF1 (Chang et al., 2011; Potter

and DeFalco, 2017; Ye et al., 2017) genes were used to identify Leydig cells;WT1 and SOX9(Buganim et al., 2012; Chang et al., 2011)

were used to identify Sertoli cells; MYH11 and ACTA2 were used to identify peritubular myoid cells (Chen et al., 2016); CD68 and

CD163were used to identify macrophages (DeFalco et al., 2015); PECAM1 and VWFwere used to identify endothelial cells (Rebour-

cet et al., 2016). Three small clusters with mixed expression profiles and/or bad quality were labeled as ‘‘other’’ and discarded as

potential contaminants and/or doublets. Mouse testicular cells were analyzed in the same process. In brief, 1915 dynamically ex-

pressed genes were selected from the mouse datasets for PCA and cell clustering. Cell clustering with k-means algorithm generated

16 clusters (optimum k defined by elbow-method), out of which 13 clusters were kept as mouse spermatogenic cell clusters, and 3

clusters with few cells were discarded for downstream analysis.

Pseudotime analysis with Monocle2
We used the R package Monocle2 (version 2.6.1) (Qiu et al., 2017) to infer pseudotime tracks for both human and mouse testicular

germ cells. The raw UMI counts of the isolated spermatogenic cells were pre-processed through the kNN-smoothing method (k = 3)

before performing pseudotime inference. We found that smoothing process greatly increased the resolution of pseudotime tracks as

compared to the ones directly inferred from the raw UMI counts (data not shown). Pseudotime inference was performed with default

parameters according to the user manual (http://cole-trapnell-lab.github.io/monocle-release/docs/): 1) Set ‘‘negbinomial.size()’’ for

expression distribution, and estimated size factors and dispersions. 2) Select genes detected among at least 5% of input cells to

project cells to 2D space using ‘‘DDRTree’’ method. 3) Order cells and visualize pseudotime tracks as shown in Figures S1F and

S2F. The ascending order of pseudotime values was consistent to the pattern of marker genes during spermatogenesis for both

human and mouse (data not shown).

Cell fate prediction with ‘‘RNA velocity’’
We used the R package ‘velocyto.R’ (version 0.6) to estimate RNA velocity according to the standard procedures suggested by the

developers (La Manno et al., 2018). The RNA velocity estimation involves three separate UMI count matrices: intronic UMIs (nmat),

exonic UMIs (emat), and the optional intron-exon spanning matrix (spmat). These matrices were generated by the ‘dropEst’ pipeline

(version 0.7.1, https://github.com/hms-dbmi/dropEst) (Petukhov et al., 2018). Briefly, 1) raw sequencing reads were tagged by ‘drop-

tag’ with the default ‘inDrop v1&v20 configuration file except here that the ‘r1_rc_length’ was set as 3. 2) The tagged reads were map-

ped to the reference genomes (here human GRCh38 and mouse GRCm38) using STAR (version 2.5.3a) with default settings. 3) The

alignments were processed by ‘dropEst’ with gene annotation GTF file (Ensembl release 90) and the default settings except here the
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‘–merge-barcodes’ option was additionally called as suggested in the standard procedure. We followed the velocyto.R manual

(https://github.com/velocyto-team/velocyto.R) which used emat and nmat to estimate and visualize RNA velocity. With predefined

cell stage, we performed gene filtering with the parameter ‘‘min.max.cluster.average’’ set to 0.1 and 0.03 for emat and nmat, respec-

tively. RNA velocity was estimated with the default settings except the parameters ‘kCells’ and ‘fit.quantile’ which were set as 3 and

0.05, respectively. RNA velocity field was visualized on a separate PCA embedding as shown in Figure 1C for human testicular germ

cells, and in Figure S2A for mouse testicular germ cells, respectively.

Conservation and divergence analysis of human-mouse spermatogenesis
Following identifying the human and mouse spermatogenic cells separately, human-mouse spermatogenesis comparison was per-

formed on geneswhich have one-to-one orthologs between human andmouse. Human-mouse one-to-one orthologous gene pair list

was downloaded from Mouse Genome Informatics (MGI)-Vertebrate Homology (http://www.informatics.jax.org/homology.shtml).

After filtering, 17,012 one-to-one orthologous genes were selected for integrating the human and mouse spermatogenic cells. Joint

PCA was performed by selecting dynamically expressed genes using integrated gene expression matrix. In total, 1,124 genes were

selected to perform joint PCA, as the results shown in Figures S2G and S2H. Top 20 genes contributing to PC2 from both ends, sepa-

rating human and mouse species-specific signature, were selected and plotted in Figure S2I.

Gene clustering
Gene clustering was performed on a collapsed expression matrix of genes-by-spermatogenic clusters across all testicular germ

cells. First, we defined the set of unexpressed genes by having expression (minimum of 1 UMI count per cell) in at least 5 single cells

from the kNN-smoothing method (k = 3) smoothed scRNA-seq data. The genes pass such criteria were defined as expressed genes,

leading to the estimation of expressing�90.5% of human genes (Figures 1D and 1E) and�80.4% of mouse genes (Figures S2C and

S2D). We also tested the sensitivity to different parameters for determining expression or unexpression status. Specifically, we

included the criterion of minimal expression level (> 0.1 mean UMI count in at least one cell cluster) or changing the criterion of min-

imal expressed cell number to 10 cells. Following determining expression or unexpression of genes, the expressed genes were then

clustered by k-means algorithm, with k varied from 2 to 10, as shown in Figure S3D. A combination of parameters for determining

expression/unexpression and k-expressed gene clusters allowed us to test the sensitivity of the observed reduction of germline

mutation rates in the expressed genes relative to the unexpressed genes. Through interpreting the results, minimal expression in

5 single cells was chosen as the optimal criterion for determining expression or unexpression; k = 5 was chosen to display the ex-

pressed gene clusters as it best represents the overall gene expression dynamics during spermatogenesis. The determined gene

clusters were used for downstream analysis into the mutation signatures. The gene names of each cluster were provided in the

Table S3. We applied the same criteria to human germ cells from individual donor or independent dataset for sensitivity analysis

as shown in Figures S3B and S3C. We also applied the same criteria to the mouse germ cells for determine gene clusters as shown

in Figures S2C and S2D, and the corresponding gene lists were provided in the Table S4.

The human expressed genes were additionally clustered by their expression level, as used in the Figure 4B. The average expres-

sion level (UMI counts) across the spermatogenic cell clusters were used as input. To assign gene groups based on expression levels,

we binned the genes by expression level into 9 groups:

Group 1: unexpressed;

Group 2: �inf < log2(UMImean) % �8;

Group 3: �8 < log2(UMImean) % �6;

Group 4: �6 < log2(UMImean) % �4;

Group 5: �4 < log2(UMImean) % �2;

Group 6: �2 < log2(UMImean) % 0;

Group 7: 0 < log2(UMImean) % 2;

Group 8: 2 < log2(UMImean) % 4;

Group 9: 4 < log2(UMImean), highly expressed.

The gene names of each expression-level gene group were provided in the Table S6.

In addition, for modeling the germline variant levels versus expression level, the expression level was further binned into smaller

groups. Specifically, log2(UMImean) expression level between �8 and 4 were evenly binned into 100 expression level stages, and

the genes within each expression level stage were isolated for calculating the germline variants levels and confidence intervals.

Determine upstream-confounded gene list
As a control analysis in Figure S5E, the genes which have their upstream 5kb region overlapped with an inverse-oriented gene,

together termed as upstream-confounded genes, were determined and removed from analyzing the mutation asymmetry scores.

These upstream-confounded genes include those genes naturally formed into head-to-head pairs. We extracted the gene feature

table from Ensembl 91 (being consistent with the germline variants database), containing chromosome, gene start position, gene

end position and strand information for each gene.We sorted the genes by chromosome and then by the gene start sites considering
e6 Cell 180, 248–262.e1–e10, January 23, 2020

https://github.com/velocyto-team/velocyto.R
http://www.informatics.jax.org/homology.shtml


the gene orientation. We then determined the natural bidirectional genes as head-to-head gene pairs with the gap between two gene

start sites smaller than 5kb. In addition, we determined the genes which have their upstream 5kb region overlapped with an inverse-

oriented gene as confounded genes. Together, we identified 2270 genes forming bidirectional gene pairs, which is �11.4% of all

protein-coding genes, consistent with previous study on bidirectional gene pairs (Trinklein et al., 2004). Together with other genes

which have their upstream region overlapped, we identified 4094 upstream-confounded genes. The gene lists of bidirectional

gene pairs and all upstream-confounded genes were provided in Table S5.

External scRNA-seq datasets
External scRNA-seq datasets were all downloaded from the public deposit according to the specific instruction from the original pub-

lication. Human adult testicular cell scRNA-seq dataset was downloaded from GEO: GSE112013, and the cell type annotation was

extracted from the SI Table 1 of the original publication (Guo et al., 2018). Human adult bone marrow hematopoietic cell scRNA-seq

datasets were downloaded fromGEO: GSE117498which comeswith the cell type annotations (Pellin et al., 2019). Human embryonic

midbrain scRNA-seq dataset was downloaded from GEO: GSE76381 which comes with the cell type annotations (La Manno et al.,

2016). Human developing cortex scRNA-seq dataset was downloaded from the deposit website of the authors (https://cells.ucsc.

edu/cortex-dev/exprMatrix.tsv.gz) and the cell type annotation from the SI Table 3 of the original publication (Nowakowski et al.,

2017). Human embryonic kidney (week16) scRNA-seq dataset was downloaded from GEO: GSM3143601, and the cell type

annotation comes from the deposit website of the authors (https://home.physics.leidenuniv.nl/�semrau/humanfetalkidneyatlas/)

(Hochane et al., 2019).

To count the expressed protein-coding gene numbers of a corresponding cell cluster or scRNA-seq sample type, we used a boot-

strap sampling strategy to overcome the technical variance of gene number estimates in different studies. We first binarized the gene

expression in a single cell as expressed or unexpressed, defined as > 0 or = 0 UMI/TPM count. Gene expression in a cell cluster/

sample was defined as having expression in at least 5 cells from a random sampling (with replacement) of 1000 cells. According

to this definition, the presented numbers in Table S2 represent the average detected protein-coding gene number of bootstrap sam-

pling (with replacement) of 1000 cells for 100 times. Such a strategy overcomes the variance of cell numbers, aswell asminimizing the

effects of differential sequencing depth between studies, thus allowing an overall fair comparison of protein-coding gene numbers

across different cell/sample types and across studies.

Human and mouse germline variants pre-processing
Human and mouse germline variants were downloaded from the Ensembl release 91 FTP site (ftp://ftp.ensembl.org/pub/release-91/

variation/vcf/homo_sapiens/homo_sapiens.vcf.gz and ftp://ftp.ensembl.org/pub/release-91/variation/vcf/mus_musculus/

mus_musculus.vcf.gz, respectively). VCF file containing the 1000Genomephase 3 germline variantswas downloaded from theEnsembl

release 91 FTP site (ftp://ftp.ensembl.org/pub/release-91/variation/vcf/homo_sapiens/1000GENOMES-phase_3.vcf.gz).

We pre-processed the human germline variants in the VCF file (homo_sapiens.vcf.) with custom bash and Perl scripts. As a first

step, we restricted the germlinemutation records to only the source database of dbSNP (dbSNP150) and then restricted themutation

type as single nucleotide variants (TSV = SNV). Second, we removed any SNV records with aminor allele frequency (MAF) higher than

5% so that only to use the SNV records with MAF < 0.05 for downstream analysis. This step allows minimizing the effect of positive

selection on germline mutational signature analysis. Third, we checked the SNV record information by referring its genome reference

allele (ref) to its ancestral allele (AA). Around 97.7% (303,936,260/311,056,106) of the SNV records are annotated with an ancestral

allele. If the annotated reference allele of an SNV record is inconsistent with its AA, we then assigned the ancestral allele as the refer-

ence allele of this SNV record while the other allele was assigned as the alternative allele. For example, if an SNV record is annotated

as C (ref) to T (alt) but comes with an AA = T, we will then assign this SNV record as a T-to-C mutation instead of a C-to-T mutation.

Such a replacement of the reference allele to its ancestral allele affects �1.5% (4,710,352/311,056,106) of the total SNV records.

Fourth, occasionally, an SNV was recorded incorrectly, with swapped reference and alternative bases. These SNVs mostly locate

in the pan-telomere region and/or in sex chromosomes. We corrected such SNV records by swapping back the reference and alter-

native bases according to the human reference genome (hg38). Such incorrect recording affects�0.067% (210,695/311,056,106) of

the total SNV records. Lastly, we extracted the 50- and 30-adjacent bases of the reference of each SNV record, in order to generate the

triple-base reference allele for each SNV record. Following these five steps, the final output of each SNV record was recorded to

include key information of chromosome, location, reference, triple-base reference and mutant base. Exampled below:

CHR LOCATION REF_BASE TRIPLE_BASE_REF MUT_BASE

1 10039 A AAC C

The output of 311,056,106 clean SNV records from homo_sapiens.vcf. were used for counting SNVs according to gene loci, and

the results were used as input for all downstream human germline variants analysis unless specifically stated.

Germline variants from 1000GENOMES-phase_3.vcf. were processed in exactly the same way. In total, 1,916,266 out of

77,202,542 SNV records (�2.48%) were corrected according to the ancestral allele and 8 SNV records were corrected according

to the hg38 reference genome. The output file containing 77,202,542 SNV records from 1000GENOMES-phase_3.vcf. was used

as the input data for control analysis as shown in Figure S3E.
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In parallel, we applied the same pipelines for themouse germline SNVs (mus_musculus.vcf.). The correction step affected 51 out of

the 73,077,311mouse SNV records. The processedmouse germline SNV recordswere used for computing germline SNV rates in the

downstream analysis.

Counting SNVs according to gene locus
We used a custom bash script and an R script to count the processed SNV records according to specific gene loci. We classified

the variants into the six mutation types: (A > T/T > A; A > G/T > C; T > G/A > C; C > T/G > A; G > T/C > A; C >G/G >C). Eachmutation

type was further distinguished in terms of the coding and the template strands, as previously introduced (Haradhvala et al., 2016).

Specifically, we first split the processed SNV records file into mutation type-specific files according to the reference base (single

base and triple bases) and mutation base, generating X > Y mutation type files and NXN > Y mutation type files, respectively.

Second, we used the ‘‘bedmap–count’’ option in the bedops tool (version 2.4.35) to count the number of SNVs of each mutation

type according to specific gene loci. The gene loci used in the analysis include: (1) Gene body, defined as the genomic interval

between the gene start site and gene end site as annotated in the GTF file (Ensembl release 91); (2) Upstream 5kb and downstream

5kb regions, each defined according to gene body region andwith reference to gene orientation information, respectively; (3) Intron

regions, defined as the noncoding regions between coding-exon regions and are not covered by any isoform mRNA. According to

this definition, we did not consider introns located in the 50- or 30-UTRs since these introns frequently have regulatory roles which

are more likely under selection (Barrett et al., 2012). For intronic regions, we additionally removed the splicing donor/acceptor

consensus sequences – 6 bases on the 50 end (splicing donor region) and 3 bases on the 30 end (splicing acceptor region) –

according to the gene orientation (Matera and Wang, 2014). With these strategies, we selected the intron regions containing

the least level of natural selection pressure.

Calculating mutation rates and asymmetry scores
The mutation rates used throughout the paper were generally defined as SNV counts per kilobases, calculated by dividing SNV

counts by the reference base counts and then multiply by 1000. According to this definition, the actual number (y axis in the plots)

of the mutation rates would vary between the input file of the processed SNV records, since they have different total numbers of

SNVs. Specifically, for germline mutations of a given gene locus, the mutation rates were calculated by dividing the sum of all

SNVs (regardless of mutation types) by the count of all bases in the locus and then normalized to 1kb. The germline mutation rates

of specific mutation type on the coding (Mutcoding) and on the template (Muttemplate) stands were calculated by dividing SNV count by

specific reference base count according to the strand information of the gene locus, respectively. The Mutcoding and Muttemplate rates

were all normalized to 1000 reference bases.

The asymmetry score of a specific mutation type between the coding strand and template strand of each gene was calculated as

log2(Mutcoding/Muttemplate), where the Mutcoding and Muttemplate represents the mutation rates on the coding and template strand,

respectively. In rare cases, the asymmetry scores being zero or infinity were removed, since these numbers indicate that Mutcoding
or Muttemplate is zero, respectively. The same procedures were also performed on upstream and downstream genomic regions, with

the strand specificity (coding strand versus template strand) being assigned in consistent with the corresponding genes.

Analyzing germline variants by gene family
Human gene family annotations were downloaded from the HUGOGene Nomenclature Committee (https://www.genenames.org/

data/genegroup/#!/). In total, 27 families contain more than 100 gene members. These families include: ‘Ankyrin repeat domain

containing (ANKRD)’, ‘Armadillo-like helical domain containing (ARMH)’, ‘Basic helix-loop-helix proteins (BHLH)’, ‘BTB domain

containing (BTBD)’, ‘Cadherins’, ‘CD molecules (CD)’, ‘EF-hand domain containing’, ‘Fibronectin type III domain containing’,

‘GPCR, Class A rhodopsin-like(excluding OR)’, ‘GPCR, Class A rhodopsin-like(Olfactory receptor)’, ‘Heat shock proteins’,

‘Helicases’, ‘Histones’, ‘Homeoboxes’, ‘Immunoglobulin superfamily domain containing’, channels’, ‘PDZ domain containing

(PDZ)’, ‘PHD finger proteins’, ‘Pleckstrin homology domain containing (PLEKH)’, ‘Ras small GTPases superfamily’, ‘Ring finger

proteins’, ‘RNA binding motif containing (RBM)’, ‘Solute carriers (SLC)’, ‘WD repeat domain containing (WDR)’, ‘Zinc fingers

C2H2-type’, ‘Zinc fingers - other’, ‘T cell receptor gene’. We further selected these gene families by having at least 10 gene mem-

bers in both expressed and unexpressed categories, as defined above. Additionally, we removed the ‘GPCR, Class A rhodopsin-

like (Olfactory receptor)’ family because majority of the genes lack an intron region located between the coding sequences of the

gene, preventing us from analyzing the neutral variants. Together these steps led to a list of 9 gene families as shown in Figures 2C

and S3K. Germline SNV rates were calculated according to gene body regions (Figure 2C) or intron regions (Figure S3K) for each

gene corresponding to a specific gene family.

Somatic cell gene expression analysis
We used the somatic cells determined from the current study to perform the control analysis of somatic cell expressed genes.

Considering that the somatic cells were in a smaller fraction among all testicular cells and the cell number varied across somatic

cell types, we restricted the set of expressed genes as being expressed in at least 5% of cells in each somatic cell type, or in all

somatic cells.
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Analyzing germline variants by GTEx expression profiles
The Genotype-Tissue Expression (GTEx, release V7) gene expression profiles used in Figures 2E and S1I across 53 tissue/organ/cell

samples were downloaded from the GTEx Portal (https://gtexportal.org/home/datasets/). We used the expression profiles contain-

ing the median TPM by tissue (GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_median_tpm.gct.gz). We first only selected

the protein coding genes in the GTEx expression matrix for downstream analysis. In Figure S3I, we used the cutoffs varied from

0.01 to 10 median TPM for counting the number of expressed protein-coding genes in each tissue/organ. To distinguish the

expressed genes out of the unexpressed protein-coding genes for each tissue in Figure 2E, we set the cutoff as 0.1 median TPM

value as given from the GTEx Portal. For each tissue, a gene was defined as expressed if the expression level wasR 0.1, otherwise

it was defined as unexpressed. Average germline SNV rates associating with each gene category for each tissue was then calculated

and the ratio was further calculated between the unexpressed gene category versus the expressed category. These ratios were

plotted as shown in Figure 2E. Z-scores were calculated on these ratios and indicated in the plot.

De novo germline mutations
We selected the single nucleotide DNMs defined from large scale trio-WGS studies on healthy families for extracting the DNMswhich

do not contain disease-associated biases. The selected datasets come from two large scale WGS studies involving healthy trios:

Jónsson et al. (2017) and An et al. (2018). The Jónsson et al. (2017) study included 1,548 trios from Iceland and detected 98,858 single

nucleotide DNMs. The An et al. (2018) study included 1,902 trios assigned in the control group and detected 115,870 single nucle-

otide DNMs. Together, our DNM analysis incorporated 214,728 single nucleotide DNMs determined from the healthy trios. Following

that, we applied the DNMs to the same pre-processing steps and counted the DNMs to the gene body of each gene. We then calcu-

lated the DNM rates at the gene level (Figures 6A and 6B) or considering the adjacent sequence contexts (Figures 6C–6G). We also

compared the mutation rates calculated from population-wide SNVs and DNMs by scaling the DNM rates. The scaling was calcu-

lated by multiplying the ratio of total SNV number divided by total DNM number on the coding (Figure 6E) or template (Figure 6F)

strand, respectively.

Gene divergence datasets
The sequence divergence datasets of human to apes (chimpanzee, gorilla, bonobo, orangutan and gibbon) were downloaded from

Ensembl release 91. Percent divergences in Figures 7 and S7 were calculated as: Divergence = 100% � Identity (human to other

apes). dN and dS values were also retrieved from Ensembl and we excluded genes with dN or dS being zero, which would bias

the dN/dS calculation. The mean values shown in Figures 7 and S7 were computed after excluding outlier values, where an

outlier value was defined asmore than three scaledmedian absolute deviations (MAD) away from themedian. For a set of divergence

or dN/dS values made up with N genes, MAD is defined as: MAD = median (|Ai � median(A)|), for i = 1,2,...,N.

Gene set enrichment analysis of unexpressed genes was done against the fast evolving genes or highly divergent genes. We first

calculated the human-to-ape dN/dS values and divergence values, respectively, in a species-specific manner for each gene. Then

the dN/dS value or divergence value for each gene was determined by averaging the values across the five ape species (NaN values

were ignored in this step). Positive selection geneswere determined by having an average dN/dS value > 1.0 across all five human-to-

ape comparisons, generating a list of 864 genes. Highly divergent geneswere determined as ranking in top 10%of divergence scores

across all protein-coding genes, generating a list of 1975 genes.

Gene Ontology analysis
Gene ontology (GO) term analysis were done with GOrilla (Gene Ontology enRIchment anaLysis and visuaLizAtion) online tool

(http://cbl-gorilla.cs.technion.ac.il/) (Eden et al., 2009). Target gene lists and background gene lists were provided for performing

GO term analysis on Biological Processes. The GOrilla program searches for GO terms enriched in the target gene list compared

to the background set using standard hyper geometric statistics. The output GO terms were selected by setting p-value cutoff

as < 10e-5, generating the lists of GO terms in the Table S7.

Statistical Analysis
Statistical significance was computed by the Mann-Whitney U test (also called rank-sum test) to test whether two groups of genes

have distinct value distributions. The significance p-values of multiple tests were adjusted by Bonferroni method accordingly. Error

bars in the plots represent 99% percent confidence intervals, calculated by bootstrap method sampling with replacement for 10,000

times on the input values of mutation rates or asymmetry scores of genes. We used default settings of bootci function in MATLAB to

calculate the bootstrap confidence interval with bias-corrected and accelerated percentile method. We set ‘alpha’ to 0.01 to

calculate 99% bootstrap confidence intervals around the mean values. For coding-template strand mutation rates comparison,

we used paired-sample t test during which the outlier values were replaced with the previous non-outlier value to ensure an

approximately normal distribution of the elements. Gene set enrichment p-values of unexpressed genes against the positive selec-

tion genes or highly divergent genes were done by hypergeometric test based on the cumulative distribution function (CDF) of the

hypergeometric distribution.
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DATA AND CODE AVAILABILITY

The single cell RNA-seq results were deposited to NCBI GEO database with the accession code GSE125372. The data analysis

codes related to the project are available on Github through the following link: https://github.com/xiabo821/TS_related_scripts.
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Figure S1. Single-Cell Transcriptomic Analysis of Human Spermatogenesis, Related to Figure 1

(A) Schematic of single-cell RNA-seq of human testis samples with the inDrop microfluidics platform (see STAR Methods). (B) Same PCA as in Figure 1B for the

testicular cells across different specimen donors and technical replicates. (C) Stacked bar plot of replicate sample composition across all testicular cell clusters

as defined in Figure 1B. (D-E) Determining the identities of testicular somatic cells (D) and the developmental program of spermatogenic cells (E) (see STAR

Methods). (F) Scatterplot of human spermatogenic cell pseudotime defined by Monocle2 algorithm. (G) Correlation coefficients between testicular cell clusters

determined from our study and from a recent publication of human testis (Guo et al., 2018). (H) Violin plot of detected protein-coding gene numbers in the single

cells across clusters. (I) Plot of detected protein-coding gene numbers in GTEx samples across different expression criteria. The plot highlighted the testis which

stands out from other tissues by having more expressed protein-coding genes.
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Figure S2. Single-Cell Transcriptomic Analysis of Mouse Spermatogenesis and Comparison with Human Spermatogenesis, Related to

Figure 1

(A) Principal components analysis on the spermatogenic-complement of the single-cell data. Arrows indicate the RNA velocity algorithm predicted develop-

mental trajectory of mouse spermatogenesis. (B) Stacked bar plot of replicate sample composition across all mouse testicular germ cell clusters as defined in A.

(C) Expression heatmap of all mouse proteins-coding genes clustered by k-means clustering. (D) Expression profiles of mouse gene sets defined by k-means

clustering. The shaded error bars represent the standard deviation of z-scored gene expression as calculated in (C). (E) Correlation coefficients between human

andmouse spermatogenic stages. (F) Scatterplot of mouse spermatogenic cell pseudotime defined byMonocle2 algorithm. (G-H) Principal components analysis

of all human and mouse spermatogenic cells mixed together. (I) Expression heatmap of genes with highly divergent expression pattern between human and

mouse spermatogenesis.



D

A B

Unexp C1 C2 C3 C4 C5

C1

C2

C3

C4

C5
1000

2000

3000

Unexp

D
on

or
#2

 g
er

m
 c

el
l-d

ef
in

ed
 g

en
e 

cl
us

te
rs

Donor#1 germ cell-defined gene clusters

1957

2367

3172

2060

1988

1898

0

10

20

30

40

50 9.9e-26
3.0e-77

1.5e-68
1.8e-76

2.3e-26

C1C2 C3 C4 C5
Une

xp

Gene clusters

10
00

G
en

om
e 

ge
rm

lin
e 

S
N

V
s 

/ k
b

0

40

80

120

160
2.0e-06

0.03
4.3e-4

2.4e-12
8.5e-3

C1C2 C3 C4 C5
Une

xp

Gene clusters

U
ps

tre
am

 (5
k)

 g
er

m
lin

e 
S

N
V

s 
/ k

b
0

40

80

120

160
1.0 3.9e-3

6.8e-16
0.5

C1C2 C3 C4 C5
Une

xp

Gene clusters

D
ow

ns
tre

am
 (5

k)
 g

er
m

lin
e 

S
N

V
s 

/ k
b 1.0

0

50

100

150

200

250
4.1e-21

2.2e-06

3.1e-62

3.9e-71

2.9e-32

C1 C2 C3 C4 C5
Une

xp

Guo2018 gene clusters
2709

3510
3754

3964
3141

2753

To
ta

l g
er

m
lin

e 
S

N
V

s 
/ k

b

0

50

100

150

200

250
7.8e-55

6.3e-83
8.9e-67

5.0e-134
2.2e-53

C1 C2 C3 C4 C5
Une

xp

Donor #1 gene clusters
2176

4330
4581

2958
3019

2767

To
ta

l g
er

m
lin

e 
S

N
V

s 
/ k

b

Gene number:

0

50

100

150

200

250
1.1e-45

5.3e-70
1.3e-56

1.1e-130
3.3e-39

3225
3537

4648
2960

2820
2641

C1 C2 C3 C4 C5
Une

xp

Donor #2 gene clusters

To
ta

l g
er

m
lin

e 
S

N
V

s 
/ k

b

0.6

0.8

1

0.6

0.8

1

0.6

0.8

1

k=1
0.6

0.8

1

k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

Expression cutoff: min_cell=10, min_UMI=0.1; N(unexp)=3851

Expression cutoff: min_cell=10, min_UMI=0; N(unexp)=2463

Expression cutoff: min_cell=5, min_UMI=0.1; N(unexp)=3845

Expression cutoff: min_cell=5, min_UMI=0; N(unexp)=1890

R
al

at
iv

e 
ge

rm
lin

e 
va

ria
nt

 le
ve

ls
 o

f 
ex

pr
es

se
d 

ge
ne

 c
lu

st
er

 v
er

su
s 

un
ex

pr
es

se
d 

ge
ne

 c
lu

st
er

K-means clustering of expressed genes into k groups

C

0

40

80

120

160

1.8e-10

7.9e-25

1.4e-34

1.2e-55

1.1e-11

C1 C2 C3 C4 C5
Une

xp

Gene clusters

In
tro

ni
c 

ge
rm

lin
e 

S
N

V
s 

/ k
b

E F G

H

0

50

100

150

200

In
tro

ni
c 

ge
rm

lin
e 

S
N

V
s 

/ k
b

0.49 2.3e-4 1.4e-3 1.0 5.4e-4 2.4e-2 1.0 1.3e-2 2.8e-2

Unexpressed genes
Expressed genes

5  77 40 318 13 213 32 110 36 191 42 404 28 268 21 376 6 1000

F1. Basic helix-loop-helix proteins
F2. CD molecules
F3. EF-hand domain proteins
F4. GPCR, Class A (w/o ORs)
F5. Homeobox proteins

F6. Immunoglobulin superfamily
F7. Ion channels

F9. Zinc finger proteins
F8. Solute carrier proteins

F1 F2 F3 F4 F5 F6 F7 F8 F9
gene count:

p-value:

I

J

K

0

50

100

150

200

250 3.9e-87 3.0e-98

1.0

2.9e-86 7.1e-98 6.7e-82 3.7e-106 4.0e-90 4.5e-81 7.7e-90 5.6e-88

germ-exp:
soma-exp:
N(gene) =

1.0 1.0 1.0

1.0 1.03.3e-92.4e-32.3e-5

Sertoli cell Leydig cell PMC Macrophage Endothelia

To
ta

l g
er

m
lin

e 
S

N
V

s 
/ k

b

p-value:

1879   11   11290 6651

- - + +
- -+ +

1871   19   10471 7470

- - + +
- -+ +

1844   46   12101 5840

- - + +
- -+ +

1874   16   12103 5838

- - + +
- -+ +

1889    1   12410 5531

- - + +
- -+ +

0

50

100

150

200

250

300

Guo et al, 2018
Human testicular 

somatic cells

Pelline et al, 2019
Human adult bone marrow 

hematopoietic cells

Le Manno et al, 2016
Human embronic 

midbrain cells

Nowakowski et al, 2017
Human embronic

cortex cells

Hochane et al, 2018
Human embronic

kidney cells

germ-exp:
soma-exp:
N(gene) =1669  221  3594 14347

- - + +
- -+ +

1151 739 1780 16161

- - + +
- -+ +

1415 475 3174 14767

- - + +
- -+ +

1185 705 1825 16116

- - + +
- -+ +

1511 379 3025 14916

- - + +
- -+ +

0.099

1.6e-14 1.9e-70

7.6e-20

To
ta

l g
er

m
lin

e 
S

N
V

s 
/ k

b

1.0

1.4e-33 3.4e-70

2.1e-4

0.93

1.2e-37 3.9e-84

1.2e-9

1.0

2.6e-14 4.1e-44

3.7e-3

1.0

7.0e-40 4.4e-94

4.8e-18

(legend on next page)



Figure S3. Control and Sensitivity Analyses for the ReducedGermlineMutation Rates in theGerm-Cell-ExpressedGenes, Related to Figure 2

(A) Comparison of gene clusters determined from donor 1 germ cells and donor 2 germ cells, respectively (see STARMethods). The colors/numbers indicate the

gene numbers of the cluster intersections. (B) Same as in Figure 2B but using the gene clusters determined only by donor #1 germ cells (left) or by donor #2 germ

cells (right). (C) Same as in Figure 2B but using the gene clusters determined from an independent study of human testicular germ cells (Guo et al., 2018). (D)

Ratios of germline mutation rates of the expressed genes versus the unexpressed genes. Each dot represents a specific ratio of germline mutation rates

according to the corresponding expressed genes versus the unexpressed genes. From left to right, the plot shows the ratios for k clusters of expressed genes to

the unexpressed genes, with k value ranges from 2 to 10. The four plots, from top to bottom, show the results for different expression cutoffs used for determining

the unexpressed gene cluster, generating different numbers of unexpressed genes (N) for sensitivity analysis. ‘min_cell’ indicates the minimal number of cells

expressing a given gene, and ‘min_UMI’ indicates the minimal expression level (average UMI) of a given gene in any one of the spermatogenesis cell clusters. (E)

1000 Genomes project phase 3 germline SNV rates across the gene clusters defined in Figure 1D. (F-G) Germline mutation rates in both upstream 5kb (F)

and downstream 5kb (G) of genes across gene clusters. (H-I) Germline SNV rates in the gene body across gene sets as determined by binarized expression

(expressed versus unexpressed) in testicular germ cells and specific somatic cells from the testis (H) or from other developmental systems (I). (J) Intronic germline

SNV rates across the gene clusters defined in Figure 1D. (K) Intronic germline SNV rates across genes belong to 9 large families, similar as in Figure 2C.

Significance between mutation rates of expressed genes versus unexpressed genes is computed by the Mann-Whitney test with Bonferroni correction for

multiple tests. Error bars indicate 99% confidence intervals calculated by bootstrap method with n = 10,000.
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Figure S4. Germline Mutation Rates and Asymmetry Scores across All Single-Nucleotide Mutation Types, Related to Figure 3

(A-C) Germline mutation rates in the intron regions of gene body (A), upstream 5kb (B) and downstream 5kb (C) (paired-sample t test). Dashed lines indicate the

average mutation rates of coding strand and template strand of the unexpressed genes. (D) Schematic of two neighboring genes where the left gene has its

coding strand on the Watson strand (+ strand) and the right gene has its coding strand on the Crick strand (- strand). Across the genome, genes are randomly

disposed with respect to Watson/Crick strand. (E) Germline mutation asymmetry scores of all single nucleotide mutation types across spermatogenesis

expressed and unexpressed gene clusters (Mann-Whitney test). Asymmetry scores are computed by distinguishing between the Watson and Crick strands,

instead of coding and template strands (as shown in Figure 3G). (F-G) Gene expression levels of each TCR gene (F) and their sum (G) across all spermatogenic

cell clusters are displayed, respectively. All significance p-values were adjusted for multiple tests with Bonferroni method. Error bars indicate 99% confidence

intervals calculated by bootstrap method with n = 10,000. See also Tables S3, S4, and S5.
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Figure S5. Control Analysis to Test Spermatogenesis Gene-Expression-Dependent Mutation Asymmetry Signatures, Related to Figure 3

(A) Shuffling gene group assignments. Genes assigned to all stages were shuffled, while maintaining the size of each group as determined in Figures 1D and 1E.

(B) Shuffling gene clustering loses themutation-rate differences between gene clusters (Mann-Whitney test). (C) Germline mutation asymmetry scores of all base

substitutionmutation types according to shuffled gene-grouping in (A) (Mann-Whitney test). Mutation asymmetry scores are computed by distinguishing between

the coding and template strands (same as in Figure 3G). (D) Germline mutation asymmetry scores determined according to the unexpressed gene sets of germ

cells and of testicular somatic cell types. (E) Plots of human asymmetry scores in the intron of gene body, upstream and downstream regions across all mutation

types. Same as in Figures 3F–3H but excluded the geneswhichmay have their upstream 5k regions overlapped by adverse-orientation genes. (F) Mouse germline

mutation rates in the intron regions of gene body (paired-sample t test). (G) Plots of mouse asymmetry scores in the intron of gene body, upstream and

downstream regions across all mutation types. All significance p-values were adjusted for multiple tests with Bonferroni method. Error bars indicate 99%

confidence intervals calculated by bootstrap method with n = 10,000.
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Figure S6. Germline Mutational Signatures Considering the Sequence Contexts, Related to Figure 4

(A) Human germline intronic mutation rates according to adjacent bases and coding/template strands in the spermatogenesis-expressed genes. (B) Human

germline mutation asymmetry scores according to adjacent bases in the spermatogenesis expressed-genes. (C-D) Mouse germline intronic mutation rates (C)

and asymmetry scores (D) according to adjacent bases and coding/template strands in the spermatogenesis-expressed genes.
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Figure S7. Evolutionary Consequences of Transcriptional Scanning across Apes, Related to Figure 7

(A-B) dN (A) and dN/dS (B) values of human genes with their orthologs across apes, according to gene clusters defined from spermatogenesis expression. Grey

dashed box highlights the unexpressed gene cluster. (C) Gene ontology categories enriched in the set of genes that are very highly expressed during

spermatogenesis. (D-E) Relative germline mutations rates of intron regions and coding sequences according to gene expression-pattern clusters (D) and gene

expression-level clusters (E). (F-I) DNA divergence levels (F), dS scores (G), dN (H) and dN/dS (I) scores of human genes with their orthologs in the indicated apes,

according to gene expression level categories. Red dashed box highlights the very highly expressed gene cluster.
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